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1. Pundamental dependences. Let us start from the following easily veri-
fied representation of the solution of the equilibrium equations of the plane
theory of elasticity in displacements:

2pu = Re [#,®@ + iy O + (1 + %) ¥ — 2¥'] p
2pv = — Re [(1 -+ %) ® — iy @ -+ %, ¥ + 2¥'] ¢ (xo= N'Hl) (1.1)
Here ¢, ¥ are arbitrary analytic functions of the complex varilable
z =x + Ly , defined in the domain of a sectlon of the body or plate. The
solution (1.1) may be found by superposition of the first and second solu-
tions and discarding excess functions {1]. We obtain

Gy == Re [(D’ + iy(I)" + ¥ $W”],
o, = Re [®" — iy®"" + ¥ + 2¥''] (1.2)

Ty = — Re [y®"" + iz¥"’]
The relationships

W — (14 n) Rei (O + ¥') + Tay

hold. 2"'% =(14%) Re {(Q"+ W)+ 1y (1-3)

2. Representation of the solution for a half-plans. Let a smooth, thin,
symmetric, absolutely stiff wedge of glven shape be inserted on the portion
L, along the x-axis in an elastic half~plane x = O ., Only a normal loading
of intensity —-p(y) which 1s symmetrilc relative to the origin is applled on
the half-plane boundary x = 0 . Because of the symmetry of the loading,
the tangentlal stresses equal zero on the x-axis. Consequently, the elastic
displacements of points in the directlion of the y-axis equal zero on the
x-axls outside the wedge.
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The absence of tangential stresses at points of the x- and y-axes leads
to the conditions (2.1)

Re i®" = 0, #=10, — ooy < 00, Re i¥' = 0, y=0, 0<z<ox

Hence, it also follows from (1.3) that the function @®’(z) 1s continued
analytically through the y-axls as well as through those portions of the
x-axls where av/%x vanishes. Hence, the imaginary parts of &’ take values
of opposite sign at points of the x-axis symmetric to the origin. On the
basis of (2.1) and (1.3) we arrive at the problem: in the upper half-plane
to find an analytic function @/{z) , which vanishes at infinity, according
to the following condition on the two portions L, of the x-axls, which are
symmetrically dilsposed relative to the origin:

‘T ’ 2}1
Rei®' = —q4v,/, 9= o (2.2)
We write 1ts solution as
2 zv ' dx
Q' (z) =T\ =
@A="\o—0 (2.3)
X
Here L, 1s the portion lying to the right of the origin. Conditions on
the y-axis
v Re ¥’ (2) = 0.° (y), 0" (— y) = 0:° (¥) (2.4)
follow from the properties of the function v/ (z)
Hence P
v -2 (2.5)
Ton )yt )
0
On the y-axis we have
0x = —p () (2.6)
Satisfying this boundary condition, we obtaln
2g0 d zv, dz o
?W(y S _x2+yz>+°x = —p(y) 2.7)
X
Substituting the value of o,° into (2.5), we find after having taken an
intermediate integral 'd 0
ron 290 ( TV G 220 p(Y)dy
Yo =—P o E i 28)
0
X

For specified v,’ and p(y) , Formulas (2.3) and (2.8) yleld the solution
of the problem of a stiff wedge and an additional loading acting on a half-
plane., For P(y) = 0 , in particular, we obtain the solution of the problem
of cleavage of a half-plane without taking account of crack formation. This
solution does not demand knowledge of the second derivative [1] of v(x, O0).
Let us consider the followlng examples.

1. Parabolic wedge driven in along the x-axis to a depth &. On the
wedge portion we have

h
%= YT VA —» @-9)
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The derivative is v,’ = O outside this portion on the x-axis. We obtain

H H
con Ry zdz hgo zdz 2.10
YO=— S VE e Y=V \Vieem 10
h
°r 1) = — S ME =A@ ¥ = BE =11 @11

1— H H—
X(E)=Eln'{?§*. =gy W= Hz

2. A half-plane reinforced along the x—-axis by a system of m stiff,
thin insertions of elliptic shape with seml-axes h,, £; . We obtaln

In
vy m=— T: (z— H) 1 — (z — H™" (2-12)

where #H, 1s the distance f{rom the center of the fth ellipse to the origin.
Substituting into (2.3) and (2.8) and evaluating the integrals, we find

m
O ()=qoiy) [VIF=(—HP+ VIig—(s+ H;} + 2iz]

=

. (2.13)
h; i(z4-Hj)

ve—w S 7|y

3.—

If 4£;= h, we then obtain the solution of the problem for & half-plane
reinforced by thin circular insertions of different radii along the x-axis.

3. A half-plane reinforced along the x-axis by thin rectangular
insertions. Here 1t 1s first necessary to consider insertions of constant
thickness Eh with triangular tips of length £ , and then, keeping the
length of the insertion 2h, unchanged, to pass to the 1imit permitting ¢
to tend to zero. After evaiuation we obtain

+1]

m
— 9o opy Tt —1 itk
@ =2 Wi, =t
=t 7 ! (2.14)
¥ (z) = 4§o 2 2 hhs [(H + 2)2 — hy?] L, Ty = ng‘hi
j=1 ?

where #, are the distances of the centers of the insertions from the origin.

3. Effeoct of a wedge and stamp on & half-plane. ILet a thin smooth wedge
of given shape which is symmetrical relative to the x-axls act on the L,
portlon of the x-axls in the x =z O half-plane, and a system of smooth

stamps of given shape symmetrlcal relative to the origin, on the L, portion
of the y-axls.

According to {2.3) and (2.8)
d d
o (z) =2 W (3) ——n S ) e (3

14 z? zF¥z¢ t—z
L L,

x x
Here the second member in {2.8) has been rewritten in another form by
using the variable ¢ = ty ; L; is traversed in the positive direction, and
p(t) is the pressure under the stamp.

On the y-axis we have
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Txy = O, Re i®’' =0 (3.2)

Hence, from the second relationship (1.3) we deduce the pressure on the

sectlion
Re i¥' = qu,’ (3.3)
where u,” is known. Therefore, substituting the value of Y’ from (3.1), we

find {1 ¢ 2 dg
p(t) dt - , bgoyo 1 VxT°dx
n S f—i, — D% T g (=% + ¥ (3-4)
y x

or, returning to the variable 1y

1 ¢ piydy vy dqopo |
x S y—yo oY += 5
v Ly

As an example, let us consider the simplest problem of a rectangular wedge
and rectilinear stamp acting on an elastic half-plane.

If the wedge of thickness 2% penetrates a depth # , then by first writ-
ing the integral in the right side of (3.5) for a rectilinear wedge with a
triangular tip of length £ and then passing to the 1limlt as + tends to
zero, we may write taking into account that y, = 0
b
S pdy _ 4hqeH’y
by‘—yo_‘ (H* 4 yo*)?

Here b 1s the half-width of the portion of the stamp in contact with
the half-plane.

The most general solution of (3.6) 1s [2]

2 ’
2% dx

@+ WP

(L,=—Ly) (3-5)

(3.6)

b e
bhgoH? S y Vb —yidy Py 3.7
P(Yo) = 2 Vi —yl . W+ A~ Vi =y e

Here P, is the force pressing the stamp to the half-plane. The integral
in the first term can be evaluated. We obtain

2gqohH b2H? — (H? 4- A?) yy? Py N
= e —2 (A= Vbt H?) (3.8
P (y()) A V‘b2 y02 (yoz 112)2 n -V'bg y02 ( V ) (

Formula (3.8) 1s valid if
Py > 2q,hb%2H A3 3.9
The edges of the stamp will hence come in contact with the half-plane.
If (3.9) 1s not satisfied, then p(?) = O . Hence
Py = 2qohb?H A3 (3.10)
Substituting into (3.8) and computing, we obtain
SqohH [HE (H? 5 A?) — boye?] VB2 — yg
PO = Tngs @' T 1

For a specified value of P, the relationship (3.10) determines the size
of the pressure section. The possibility of solving (3.11) for a rectilinear
stamp 1s stipulated by the bulging of the half-plane boundary in the nelgh-
borhood of the origin under the influence of the penetrated wedge.

If a semi-infinite rectangular wedge is driven in to the right along the
x~axis in the half-plane so that the distance between 1ts tlp and the bound-
ary of the half-plane 1s & , then the plus sign must be taken in the right-
hand side of (3.6) and we obtain for this case

B 9qohll  bRHE — (H+ AY)ye? Po
PO =— g @ HP Ve —y

(3.11)

(3.12)
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The pressure p(y) turns cut to be positive alon; the whole stamp under
the condition Py > 2q0hb2H'1 A-1 (3.13)

In the opposite case the pressure domain consists of the sectlons (a, B),
(- b, —a). Hence p(+ @) =0 .

It is simplest to investigate thls case by rewriting (3.0) as

b
pdy - 2hqyl1? 344
§ Y=y T () G4
Substituting yp2 =&, py (8) = p(VE)/2VE we write
b
PLEVAE  2hgo? ,
\ P = (3.18)
Hence at b
hqoH? [ Eo—a® \"s( [ B2 —E \'h dE
Pr(Bo) = — 2 ( b2 — £, ) S’( E_ a* ) (B2 + H22 (E —Ep) (3.16)

Evaluating the integral and returning to the old variable, we obtain
2hqoH%y, [1 b2 — q? ( 1 + Yyo? + H? )]( YoZ — a? >‘/z

Py) =173 (we? + H2)p maAE \mmy -1 ImyiAz b — yo?
a+ H
m? = b—j:—H (3.47)

Here under the radical we understand a branch which takes positive values
on the upper edge of the slit (a, b) .

The force pressing the stamp to the half-plane is

2hqoH? (b2 — a?)
(a2 HYA

If 1t has been given, then we find the slze of the pressure section from
the equality (3.18%.

The existence of the solution (3.17) 1is here related to dropping of the
half-plane boundary toward the wedge under the influence of the wedge. This
drop, and in general, the change in the half-plane boundary under the influ-
ence of the wedge 1s characterized exactly by the second member in (3.5).

If the pressing force 1s not large enough, a gap will remain between the
domain boundary and the stamp.

(3.18)

0

It 1s easy to write down the solution of (3.5) in the general case for
any u,’ and v, ’.
Let us note that for a given wedge there exlsts such a shape of a stamp

{or stamps) for which the right-hand side of (3.5) vanishes. Namely, this

will hold if , 46 z?v dx
u T — [
% n S (@ Fy?) (3.19)
Lx
In this case, for example, for one stamp we will obtain
Py
= —— 3-20
P{yo) = - Ve (3.20)

where Ps 1s the force pressing the stamp. The stamp boundary, hence, turns
out to be concave 1f the right side of (3.19) is positive.
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